Relationship between Freeway Flow Parameters and Safety and its Implications on Hard Shoulder Running

Jake Kononov, Ph.D., P.E.
Colorado Department of Transportation
Director of Research
4201 E. Arkansas
Denver, Colorado 80222
Phone 303-757-9973
Fax 303-757-9974
Jake.Kononov@dot.state.co.us

Steven Hersey, P.E.
Colorado Department of Transportation
Region 6 (Denver Metro Area) Traffic Engineer
2000 S Holly
Denver, Colorado 80222
Phone 303-757-9511
Steven.Hersey@dot.state.co.us

David Reeves, P.E.
Colorado Department of Transportation
Safety Research Engineer
4201 E. Arkansas
Denver, Colorado 80222
Phone 303-757-9518
David.Reeves@dot.state.co.us

Bryan K. Allery, P.E.
Colorado Department of Transportation
Safety Engineering and Analysis Group Manager
4201 E. Arkansas
Denver, Colorado 80222
303-757-9967
Bryan.Allery@dot.state.co.us

This paper contains 4227 words and 10 figures

Submitted for Presentation and Publication at the 2012 TRB Annual Meeting
ABSTRACT

Decisions to run traffic on freeway shoulders during peak period are motivated by the need to relieve congestion. It is generally believed by practicing traffic engineers that decreased congestion resulting from hard shoulder running is associated with some unspecified degree of improved safety, yet the majority opinion among researchers is that accident rates increase with increase in the number of lanes even if full shoulders are provided. Despite many years of modern road building these conflicting views have not been reconciled. This paper first examines the relationship of traffic flow parameters such as volume, density, and speed to safety by calibrating corridor specific safety performance functions. On the basis of understanding this relationship a possible explanation of the effect of hard shoulder running on safety is formulated. Empirical examination of the relationship of flow, density, and speed to the crash rate on selected freeways in Colorado suggests that, as flow increases crash rate initially remains constant until a certain critical threshold combination of speed and density is reached. Once this threshold is exceeded, the crash rate rapidly rises. The rise in crash rate may possibly be explained by the fact that increase in density without notable reduction in speed produces headways so small that it becomes very difficult or impossible to compensate for driver’s error. This model suggests that during hard shoulder running crash rates decline because of lower traffic volume/density per lane. It also suggests that safety benefits of reducing volume or density per lane outweigh adverse effects of not providing a full shoulder.
INTRODUCTION

Relating Freeway Flow Parameters to Safety

Relationships of speed to flow and density to flow for a typical basic freeway segment are well understood at present and are documented by the successive editions of the Highway Capacity Manual (HCM)(1). All recent freeway studies show that speed on freeways is insensitive to flow in the low to mid range. Increase in flow and density without notable reduction in speed has a significant influence on safety. This influence, however, has not been studied extensively and has attracted only limited interest from researchers to date. Lord et al. (2) observed that most research has focused on determining the relationship between crashes and annual average daily traffic (AADT), while little attention has been focused on the relationships of vehicle density, level of service (LOS), vehicle occupancy, volume to capacity (V/C) ratio and speed distribution. Zhou and Sisiopiku (3) found that crash rates typically follow a U-shaped relationship when plotted as a function of V/C ratio. Traditional safety performance functions relate accident occurrence to annual average daily traffic (AADT). Persaud and Dzbik (4) observed that a difficulty with this approach is that a freeway with intense flow during rush periods would clearly have a different accident potential than a freeway with the same AADT but with flow evenly spread out throughout the day. Kononov et al. (5) observed that on uncongested freeways the number of crashes increases moderately with increase in traffic; however, once some critical traffic density is reached, the number of crashes begins to increase at a much faster rate with an increase in traffic. Garber and Subramanyan (6) related crashes to lane occupancy and concluded that peak crash rates do not occur during peak flows. Harwood in (7) noted that it would be extremely valuable to know how safety varies with Volume/Capacity (V/C) ratio and what V/C ratios provide the minimum accident rate. Hall and Pendleton (8) observed that knowledge of the definite relationship between V/C ratio and crash rate would help engineers and planners assess safety implications of highway improvements designed to increase capacity. In (2) Lord et al. conclude that “despite overall progress, there is still no clear understanding about the effects of different traffic flow characteristics on safety.”

Figure 1 (EXHIBIT 23-3) from the 2000 Edition of the Highway Capacity Manual (HCM) (1) shows the speed-volume/density relationship and Level of Service (LOS) for basic freeway segments. It reflects the fact that drivers on modern freeways are slowing down very little or not at all as LOS deteriorates from A to D. Considering that perception-reaction time and vehicle characteristics remain unchanged while there are considerably more vehicles in the same space traveling at substantially the same speed as before, an increased probability of crash occurrence is highly plausible. This increase would be reflected by changes in the crash rate. For instance, a freeway with free-flow speed of 70 mph at point 1 carrying 600 pc/h/ln (V1) has density \(d_1 = 8.6 \) pc/mi/ln and operates at LOS A. When congestion builds up to 1750 pc/hr/ln (V2) (boundary
between LOS-C and LOS-D.) the resulting density rises to \(d_2 = 26 \, \text{pc/mi/ln} \) and operating speed drops only slightly to 68 mph.

![Speed-Flow Curves and LOS for Basic Freeway Segments](image)

Figure 1 Speed-Flow Curves and LOS

As a transition is made from point 1 to point 2, we observe densities that are almost 3 times greater and a decrease in speed of only 3%. When these flow parameters are examined for a freeway with Free-Flow Speed of 55 mph we observe that volume rises from 600 vph (density =10.9 pc/mi/ln) to 1,750 vph (density=31.8 pc/mi/ln) without any speed reduction. Compression of flow without corresponding reduction in speed is likely to have an adverse effect on safety; calibration of this effect is explored in this paper.

Effect of Hard Shoulder Running on Safety

From the traffic operations standpoint running traffic on shoulders approximates adding through lanes to the freeway, recognizing that some adjustment must be made to the Base Free Flow Speed (BFFS) to account for reduced lateral clearance and increased number of lanes. According to the HCM (1) lateral clearance of less than 6 feet reduces BFFS while adding lanes increases it. Decisions to run traffic on freeway shoulders during peak period are motivated by the need to relieve congestion. It is generally believed by practicing traffic engineers that decreased congestion resulting from hard shoulder running is associated with some unspecified degree of improved safety, yet the majority opinion among researchers is that accident rates increase with increase in the number of lanes even if full shoulders are provided. Despite many years of modern road building these conflicting views have not been reconciled.
It is known from the HCM (1) that capacity is increased proportionally with the number of lanes with some adjustment for increase in the Free Flow Speed as the number of lanes increases. What effect the number of lanes has on safety, however, is not fully understood at present.

Research conducted by Council and Stewart (9) on the safety effects of converting two-lane roads to four lanes finds 40% to 60% reduction in crashes as a result of conversion to 4-lane cross-section. Milton and Manering (10) found that increasing the number of lanes in rural Washington State leads to more accidents. Noland and Oh (11) rejected the hypothesis that geometric improvements including increase in the number of lanes, lane width, median width, and reduction in curvature are beneficial for safety.

Garber (12) concluded that accident rates increase with increase in the number of lanes. Kuhn (13) noted that European highway agencies realized both safety and mobility benefits from hard shoulder running while safety benefits of American deployment are inconclusive. Aron (14) et al examined safety benefits of using hard shoulder on Paris motorway and concluded that a reduction in congestion results in decreasing the accident count, but expressed concerns about accident migration.

Fuhs (15) cautions that safety is generally the greatest concern when implementing shoulder running strategies, since use of shoulder as a travel lane results in the loss of a continuous emergency refuge area. Geisterfeldt (16) examined the effect of temporary hard shoulder use in the German State of Hesse. He observed increased capacity in the 20-25% range and concluded that hard shoulder use does not affect road safety.

Thomas (17) observed that initial safety concerns of hard shoulder running were dispelled by the discovery that fewer accidents took place as drivers were not running in congested traffic and making risky maneuvers. Most recent findings from Britain's Highway Agency three year safety study of hard shoulder running on M42, Unwin (18) show 56% reduction in accidents involving personal injuries.

Bauer et al. (19) concluded that adding an additional lane to convert urban freeway from four to five lanes in one direction by reducing existing lane and shoulder width results in 10% to 11% increase in all crashes. It is important to note that their findings were influenced by the fact that added lanes were utilized as High Occupancy Vehicle (HOV) lanes and not as General Purpose (GP) lanes, as a result the traffic was not distributed evenly among the lanes which detracts from the benefits of hard shoulder running.

This paper first examines the relationship of traffic flow parameters such as volume, density, and speed to safety by calibrating corridor specific safety performance functions based on hourly volume. On the basis of understanding this relationship a possible explanation of the effect of hard shoulder running on safety is formulated.

MODEL DEVELOPMENT
Dataset Preparation

Hourly volume, operating speed and free-flow speed data were collected from existing automatic traffic recording (ATR) stations around the Denver metropolitan area 4-lane freeways and a segment of Interstate 70 (I-70), which carries ski resort traffic in mountainous terrain. Mainline crash history was obtained from the CDOT crash database for every hour over a five (5) year period for every freeway in the dataset. All crashes that occurred on ramps and cross roads were removed prior to fitting the models. Matching hourly volume on every segment with its crash history enabled us to compute crash rate in accidents per million mile traveled (acc/mvmt) for every hour of the 24 hour period for all freeways in the dataset. A composite graph representing several Denver area 4-lane freeways demonstrating changes in volume and crash rates throughout the day is presented in Figure 2.

It is of interest to note that between the hours of midnight and 5 AM nearly 60% of all crashes involved alcohol or drug use or falling asleep at the wheel as compared with only 4% the rest of the day. Such a dramatic difference in driver performance abilities

Figure 2 Changes in Volume and Crash Rate over the 24 hr Period on Denver Area Urban Freeways

TRB 2012 Annual Meeting
Paper revised from original submittal.
and crash causality suggests a qualitatively different phenomenon. A mix of impaired
and fatigued drivers with low volumes produces very high crash rates when compared
with day time safety performance of the same segments. It may possibly explain the U-
shaped relationship identified by Zhou and Sisiopiku in (3). The impaired driver issue, a
largely behavioral problem, is distinct from issues near or at peak times. Recognizing
this, a portion of the dataset containing safety performance data between midnight and
5 AM was removed prior to calibration of the corridor specific Safety Performance
Functions. Additionally Figure 2 suggests that the afternoon peak is characterized by
slightly higher crash rates than the morning peak. It may possibly be speculated that
commuters are more fatigued, more eager to get home from work, and less focused on
the driving task. Also, the higher crash rates may possibly be attributed to more
secondary crashes resulting from the longer duration of the PM peak period. With this
in mind, we have calibrated separate corridor specific Safety Performance Functions
(SPF) containing morning and afternoon peak periods on urban freeways and a
seasonal safety performance function for I-70 carrying ski resort traffic.
Neural Networks

Corridor specific SPFs relating freeway flow parameters with crash rate were developed using Neural Networks, a subset of the general class of nonlinear models. Neural Networks were used to analyze the data which consists of observed, univariate responses Y_i known to be dependent on corresponding one-dimensional inputs x_i. Neural Networks are not constrained by a pre-selected functional form and specific distributional assumptions. For our application, $Y_i = \text{Crash Rate (acc/mvmt)}$ and $x_i = V$, where V is hourly volume per lane (pc/h/pl). The model becomes:

$$Y_i = f(x_i, \theta) + e_i$$

where,

$f(x_i, \theta) = \text{the nonlinear function relating } Y_i \text{ to the independent variable } x_i \text{ for the } ith \text{ observational unit}$,

$\theta = \text{a } p\text{-dimensional vector of unknown parameters}$, and

$e_i = \text{is a sequence of independent random variables}$.

The goal of the nonlinear regression analysis is to find the function f that best reproduces the observed data. A form of the response function used in many engineering applications is a feed forward neural network model with a single layer of hidden units. Hidden units represent intermediate computational layers between the input and the output of the Neural Network. The form of the model is:

$$f(x, \theta) = \beta_0 + \sum_{k=1}^{K} \beta_k \varphi(x, \gamma_k + \mu_k)$$

where

$\varphi(u) = \frac{e^u}{1 + e^u}$, a logistic function,

$\beta_0, \beta_k, \gamma_k, \mu_k = \text{the parameters to be estimated for } i = 1, \ldots, K$, and

$K = \text{the number of hidden units}$.

The β_k's are known as connection weights and the μ_k are the biases, Ripley (20).

The function f is a very flexible nonlinear model used in this application to capture the overall shape of the observed data. When $K = 1$, there is one hidden unit. In this case, the function performs a linear transformation of the input x and then applies the logistic function $\varphi(u)$, followed by another linear transformation. The result is still a very flexible nonlinear model.
The parameters $\beta_0, \beta_1, \gamma_1, \mu_1$ for each dataset are unknown and will be estimated by nonlinear least squares. The complexity for this application is the number of hidden units K in the model. We have chosen $K=1$ based on general understanding of the underlying physical phenomenon. Additionally, the complexity of the model is most often chosen based on the generalized cross validation (GCV) model-selection criterion. Cross-validation is a standard approach for selecting smoothing parameters in nonparametric regression described by Wahba (21). Overall model fit to the data is quite good (Figures 3-6).

![Figure 3 Corridor-Specific SPF C-470 (PM)](image-url)
Figure 4 Corridor-Specific SPF I-70 Weekend Winter (EB Flow)

Figure 5 Corridor-Specific SPF I-270 (PM)
Recognizing that volume V is a product of traffic density (d) times speed (s) enables us to consider density in concert with speed as we examine the relationship between flow characteristics and safety. Figures 3-6 reflect these relationships for several four lane freeways in the Denver metro area and a heavily traveled rural freeway in a mountainous environment. It is important to note that the inventory of freeways used in this paper did not include any freeways which exceed volumes of 1,900 vphpl. This may explain why the reduction in crash rates associated with heavy congestion described by Kononov (5) is not reflected in the functional form of corridor specific SPFs in this study. Further, the limited range of speeds represented prevents detailed analysis of the way in which speed enters into the equation. Figures 3-6 suggest that total crash rate remains relatively stable until a certain threshold value of V is reached. Once it is exceeded, however, the crash rate begins to rise rapidly. The relationship between $V=ds$ and crash rates seems to resemble a phase change phenomenon in chemistry or critical mass in physics. A possible explanation may be that if $V(ds)$ exceeds a certain critical threshold value V_c available headway becomes too small for the prevailing speed to allow drivers to react effectively to changing traffic conditions. Furthermore, two (2) distinct operational regimes can be observed on Figure 7 as well as on all other corridor specific SPFs, Regime-1 where V is less than critical volume V_c ($V<V_c$) and Regime-2 where V exceeds V_c ($V>V_c$). The critical value of V_c can be estimated using a sliding interval analysis in the framework of the numerical differentiation technique described by Rao (22).
Regime 1 is characterized by low to moderate density and high speeds, where drivers are still able to compensate for increasing density. The increased focus on the driving task may possibly explain the fact that during Regime 1 the crash rate remains stable despite increase in density. Regime 2 is characterized by moderate to high densities without notable speed reduction where the combination of speed and density is such that more drivers are not able to compensate for driver’s error and avoid a crash. In Regime 2 greater portion of near misses becomes crashes reflected by a sharp rise in the crash rate.

Figure 8 relates speed-volume-density/LOS curve for a freeway with free-flow speed of 70 mph with changes in crash rates reflected by the SPF. Incorporating LOS and accident rates in the SPF framework allows us to quantitatively relate safety to the degree of congestion. Understanding the relationship between traffic flow parameters and safety has important implications on the philosophy and policy of transportation planning, highway design criteria and freeway management.

A possible strategy to counteract the deficit of available deceleration distance associated with a mix of high speeds and short headways is to allow hard shoulder running during peak periods thus reducing volume and density per lane. The rest of the paper examines how hard shoulder running affects safety.
EXPLAINING THE EFFECT OF HARD SHOULDER RUNNING ON SAFETY USING SPF

What effect hard shoulder running has on safety is a practical question. It was raised in the course of a major transportation study in the Denver Metro area in connection with comparing design alternatives from a safety standpoint. We will explore this question using corridor specific SPF. C-470 Beltway around Denver is a 4-lane freeway facility carrying 1,870 vehicles per hour per lane (vphpl) during the peak period. Using the C-470 specific SPF we can estimate that at 1,870 vphpl the crash rate is 1.25 acc/mvmt. Proposed use of hard shoulder as a travel lane during peak period will result in redistribution of volume over 6 lanes instead of 4. This will produce a lower volume of 1,247 vphpl following construction. Using C-470 SPF and reduced volume per lane we can estimate safety performance after deployment of hard shoulder running at a substantially lower crash rate of 0.46 acc/mvmt (Figure 9).

Calibrating the corridor specific SPF enables engineers and planners to estimate the effect of hard shoulder running on safety following deployment by estimating crash rate at lower density per lane. However, the post-deployment safety estimate above is likely to be somewhat optimistic. The estimate is based on the SPF for freeways with full shoulders. According to the FHWA’s Crash Modification Factors (CMF) Clearing House (23) providing full shoulders will reduce crashes by 20 to 25%. Nevertheless, even if a conservative assumption of 25% increase in crash rate due to lack of shoulders is
made, the resulting crash rate of 0.58 acc/mvmt (Figure 10) is still half of observed rate of 1.20 acc/mvmt. It is of interest to note that crash reduction from hard shoulder running predicted by corridor specific SPF are very similar to 56% observed in Britain’s Highway Agency safety study (18) of M42.

Use of corridor specific SPF suggests that the benefit of crash reduction is likely to outweigh adverse effect of not having full shoulders. It is important to recognize, however, that the effect of hard shoulder running on safety is dependent on the number of lanes and the degree of congestion. The safety benefit of hard shoulder running on 4-lane freeway is expected to be greater than that on 6-lane facilities. It may possibly be explained by the fact that density is decreased by 50% on the 4-lanes and only by 33% on the 6 lanes freeways.

Figure 9 Crash Rate Reduction due to Volume/Density Decrease from Hard Shoulder Running
SUMMARY

The relationship between traffic flow parameters and safety has important implications on the philosophy and policy of transportation planning, highway design criteria and freeway management.

Empirical examination of the relationship of flow, density, and speed to crash rate on selected freeways in Colorado suggests that as flow increases crash rate initially remains constant until a certain critical threshold combination of speed and density is reached. Once this threshold is exceeded the crash rate rapidly rises. The rise in crash rate may possibly be explained by the fact that compression of flow without notable reduction in speed produces headways so small that it becomes very difficult or impossible to compensate for driver’s error. A possible strategy to counteract the deficit of available deceleration distance associated with a mix of high speeds and short headways is to deploy hard shoulder running during peak period, thus reducing volume per lane. Incorporating LOS and accident rates in the corridor-specific SPF framework allows us to quantitatively relate safety to the degree of congestion. Calibrating corridor specific SPF also enables engineers and planners to estimate the effect of hard shoulder running by estimating crash rate at a lower volume and density per lane.
Use of corridor specific SPF suggests that the benefit of crash reduction is likely to outweigh adverse effect of not having full shoulders. The adverse effect of not having shoulders can be further moderated by constructing pullouts, increased presence of courtesy patrol, variable speed limits and real time queue warnings. It is important to recognize, however, that the effect of hard shoulder running on safety is dependent on the number of lanes and degree of congestion.
References

