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ABSTRACT 
 
Safety Performance Functions are accident prediction models that relate traffic 
exposure, measured in Annual Average Daily Traffic (AADT) to safety, measured in the 
annual number of accidents per mile (accidents/mile per year).  Review of literature on 
the development of Safety Performance Functions (SPF) suggests that the focus of 
most modeling efforts is on the statistical technique and the underlying probability 
distribution with only a limited consideration given to the nature of the phenomenon 
itself. In this study Neural Networks have been used to identify the underlying 
relationship between safety and exposure. The modeling process was informed by the 
consideration of the traffic operations parameters described by the Highway Capacity 
Manual (HCM). The shape of the SPF is best described by a sigmoid reflecting dose-
response-like relationship between safety and traffic demand on urban freeways. We 
observed that on un-congested segments the number of crashes increases only 
moderately with increase in traffic; however, once some critical traffic density is 
reached, the number of crashes begins to increase at a much faster rate with increase 
in traffic. This phenomenon is reflected by a steeper gradient of the SPF.  Further 
examination of the SPF suggests that on segments with high AADT (LOS-F during peak 
period), the function begins to level off, reflecting decrease in accident rates related to a 
high degree of congestion and significant reduction in operating speeds.  Relating 
safety to the degree of congestion suggests that safety deteriorates with the 
degradation in the quality of service expressed in terms of the Level of Service (LOS). 
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Two roads diverged in a wood 
And I took the one less traveled by 
And that has made all the difference 
 
Robert Frost, Road less traveled 
 
 
Introduction 
 
Safety Performance Functions are accident prediction models that relate traffic 
exposure, measured in AADT, to safety, measured in the number of accidents over a 
unit of time (accidents/mile per year).  Much substantive and comprehensive work in  
the area of accident modeling was undertaken by Hauer and Persaud (1), Hauer (2), 
Lord, Washington and Ivan (3) and Abdel-Aty and Radwan (4).  Details concerning 
dataset preparation and model fitting for the development of Safety Performance 
Functions were described by Kononov and Allery (5).  
 
Review of extant literature on the development of Safety Performance Functions (SPF) 
suggests that the focus of most modeling efforts is on the statistical technique and 
underlying probability distribution. Poch and Mannering (6) concluded that the Negative 
Binomial regression is a powerful predictive tool and should be increasingly applied in 
future accident frequency studies.            
   
Shankar et al. (7) used both the Poisson and Negative Binomial distributions to evaluate 
the effects of roadway geometrics and environmental factors on rural accident 
frequency in Washington State.  They used Negative Binomial assumptions when data 
were over-dispersed and Poisson when not.   
 
Abdel-Aty and Radwan (4) observed that most of the accident data is over-dispersed 
pointing to the need for a correction to Poisson assumptions and correctly concluded 
that the Negative Binomial Formulation is superior to the more restrictive Poisson 
formulations.  
 
Miaou (8) suggested that Poisson model assumptions should be used to establish initial 
relationship between highway data and accidents and if over-dispersion is found a 
Negative Binomial regression model can be explored. 
 
Lord, Washington and Ivan (3) concluded that Poisson and Negative Binomial models 
serve as statistical approximation to the crash process.  Poisson models serve well 
under nearly homogeneous conditions, while Negative Binomial models serve better in 
all other cases.  They also suggested that it may be preferable to begin to develop 
models that consider fundamental process of a crash and avoid striving for best fit 
models in isolation.  
 
There is clearly a consensus among researchers that underlying randomness is well 
described by the Poisson or Negative Binomial distributions. The underlying 
phenomenon itself, however, is not well understood.   
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Harwood in (9) concluded the following: “…it would be extremely valuable to know how 
safety varies with V-C ratio and what V-C ratios provide minimum accident rate.  Only 
limited research has been conducted on the variation of safety with V-C ratio.  More 
research of this type is needed, over a greater range of V-C ratios, to establish valid 
relationships between safety and traffic congestion to provide a basis for maximizing the 
safety benefits from operational improvement projects.”  
 
Hall and Pendleton in (10) observed that:  “The implications of the existence of a 
definite relationship between traffic accident rates and the ratio of current or projected 
traffic volume to capacity is quite significant.  Knowledge of any such relationship would 
help engineers and planners assess the safety implications both of projected traffic 
growth on existing highways and of highway improvements designed to increase 
capacity.” 

 
To date the focus of the modeling efforts has been on the random variability with only a 
limited consideration of a systemic component. Selection of the functional form is 
heavily influenced by the choice of functions available in the software package used by 
the modeler.  Accidents on an urban freeway are a byproduct of a traffic flow; therefore, 
observing changes in the flow parameters may give clues about probability of accident 
occurrence and changes in accident frequency.  Hauer (2) observed that there is no 
reason to think that underlying phenomenon follows any simple mathematical function.  
Use of the Neural Networks in this study offers an opportunity to explore the underlying 
relationship between variables without being limited by pre-selected mathematical 
function. Neural Networks are not constrained by the underlying distributional 
assumptions and learn by example, inferring a model from training data. In this study 
traffic operations parameters described by the Highway Capacity Manual (HCM) (11) 
were used to inform the SPF development process.   
 
DATASET PREPARATION AND MODEL DEVELOPMENT 
 
Five years of accident data from Colorado, California and Texas were used to develop 
Safety Performance Functions (SPF) for the selected multilane urban freeways.  
California data was obtained from the Highway Safety Information System (HSIS), 
Colorado and Texas datasets were provided by their departments of transportation.   All 
of the accidents that occurred on ramps and crossroads were removed prior to fitting of 
the models, which left only accidents occurring on the freeway mainline itself. Two kinds 
of SPFs were calibrated for Colorado and California; one for the total number of 
accidents and the other for crashes involving injury or fatality. Due to data availability 
only total accidents SPF models were calibrated for Texas. 
 
SPFs were developed using Neural Networks that is a subset of a general class of 
nonlinear models.  We used Neural Networks to analyze the data which consists of 
observed, univariate responses iY  known to be dependent on a corresponding one-
dimensional inputs ix . Neural Networks are not constrained by a pre-selected functional 
form and specific distributional assumptions. For our application, iY  = Accidents Per 
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Mile Per Year (APMPY) and ix  = Annual Average Daily Traffic (AADT).  The model 
becomes: 
 

( ) iii exfY += θ,  
 
where  
 
( )θ,ixf  = the nonlinear function relating iY  to the independent variable ix  for the ith  

observational unit,  
 
θ  = a p-dimensional vector of unknown parameters, and  
 

ie = is a sequence of independent random variables.  
 
 
The goal of the nonlinear regression analysis is to find the function f  that best 
reproduces the observed data. A form of the response function used in many 
engineering applications is a feed forward neural network model with a single layer of 
hidden units. The form of the model is: 
 

( ) ( )∑
=

++=
K

k
kkk xxf

1
0, μγϕββθ  

Where  
 
( ) ( )uu eeu += 1/ϕ - a logistic distribution function  

kβ  = are known as connection weights and 

1110 ,,, uγββ  = the parameters to be estimated 

kμ  =  the biases , Ripley (10). 
K = the number of hidden units 
 
The function f  is a very flexible nonlinear model used in this application to capture the 
overall shape of the observed data. The function ( )uϕ  is a logistic distribution function. 
When 1=K , there is one hidden unit. In this case, the function performs a linear 
transformation of the input x and then applies the logistic function ( )uϕ , followed by 
another linear transformation. The overall result is a very flexible nonlinear model.  
 

The parameter vectors 1110 ,,, uγββ  for each dataset are unknown and will be estimated 
by nonlinear least squares. The complexity for this application is the number of hidden 
units K  in the model. We have chosen 1=K  based on general understanding of the 
underlying physical phenomenon. Additionally the complexity of the model is most often 
chosen based on the generalized cross validation (GCV) model-selection criterion. 
Cross-validation is a standard approach for selecting smoothing parameters in 
nonparametric regression described by Wahba (11).  Figures 1 through 4 represent total 
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crash SPFs and model fit information for the selected multilane freeways in Colorado, 
California and Texas.  The R2 parameter, predicted values from the model versus the 
residuals and the root mean squared error (RMSE) are also given. The residuals exhibit 
a pattern of increased variance as the AADT values increase. This is to be expected 
given the overall pattern of the data. Overall model fit to the data is quite reasonable.  
 

 
 

Figure 1 Colorado 6-Lane Freeway SPF and Model Fit Information 
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Figure 2 California 6-Lane Freeway SPF and Model Fit Information 
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Figure 3 California 8-Lane Freeway SPF and Model Fit Information 
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Figure 4 Texas 8-Lane Freeway SPF and Model Fit Information 
 

SPFs for multilane freeways in different states are different due to different reporting 
thresholds, climate and other local factors, yet sigmoid functional shapes of the Safety 
Performance Functions generated by the Neural Network regression are similar.  The 
shape reflects a relationship similar to a dose-response curve found in medicine and 
pharmacology, as well as other sciences. In all cases, accident data for urban freeways 
exhibited extra-variation or over-dispersion relative to the Poisson model.   
 

RELATING CHANGES IN ACCIDENT RATES WITH CHANGES IN THE SHAPE  
OF THE SAFETY PERFORMANCE FUNCTION – A BRIEF OVERVIEW 

 
Accident rates change with AADT, and SPF reflects how these changes take place.  
Higher rates within the same SPF mean less safety than lower rates. Any accident 
frequency derived from the SPF expressed in accidents per mile per year (APMPY) can 



 

 10

be easily converted into accident rates measured in accidents per million vehicle miles 
traveled (acc. per mvmt).  For instance, the Colorado SPF calibrated for 6-lane urban 
freeways (Figure 5) 120,000 AADT is expected to produce on the average 56 accidents 
per mile per year, 56 acc/mi annually can be directly converted to the accident rates as 
follows: 
 

mvmtacc
yeardaysxmilexvpd

xyearmileacc
/28.1

/3651000,120

000,000,1)//56(
=  
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Figure 5 Colorado SPF – 6-Lane Urban Freeways, 
 Accident Rates and Frequency per Mile per Year 

 
 
It is of interest to observe how changes in the accident rates are reflected by the shape 
of the safety performance function.  Let’s presume that (A) and (B) are values from the 
Fi, a Safety Performance Function representing a multilane freeway.  Accident rate (R) 
at AADTA and AADTB can be expressed as follows: 
 
Accident Rate at A= RA 

C
AADT

A
R

A
A ∗=  

 
Accident Rate at B= RB 

C
AADT

B
R

B
B ∗=   

 

yeardaysmile
C

/3651

000,000,1

∗
=  
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As we make a transition from A to B the number of accidents is increasing with AADT; 
however, the accident rate itself can remain the same, decrease or increase depending 
on the shape of the SPF.  Figure 6 graphically represents each scenario.   
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Figure 6  Changes in Accident Rate within SPF  
 
 
 
Rate @ A = Rate @ B 

If A and B∈Fi  and 
AAADT

A =
BAADT

B
⇒RA =RB 

 
In this case as a transition is made from point A to point B of the SPF the accident rate 
at A is the same as the accident rate at B.  The number of accidents increases with 
AADT in such a way that the ratio of crashes to exposure at points A and B is 
preserved.  It is reflected by a relatively moderate gradient in the shape of the function.  
 
 
Rate Increases 

If A and B∈Fi  and 
AAADT

A <
BAADT

B
⇒RA < RB 

 
In this case as a transition is made from point A to point B of the SPF the accident rate 
is increasing.  The number of accidents increases with AADT in such a way that the 
ratio of crashes to exposure is increased.  It is reflected by a relatively steep gradient in 
the shape of the function.  
 
Rate Decreases 

If A and B∈Fi  and >
AAADT

A

BAADT

B
⇒RA > RB 
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In this case as a transition is made from point A to point B of the SPF the accident rate 
is decreasing.  The number of accidents is increasing with AADT, but AADT is 
increasing faster.  It is reflected by a very mild upward gradient of the SPF. 
 
Figure 7 shows changes in accidents rates observed on 6-lane urban Colorado 
freeways from the low to high range of AADT.  For the SPF representing total crashes 
the accident rate is more than doubled as a transition is made from 60,000 to 150,000 
AADT. 
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Figure 7 Changes in Accident Rates within SPF 
(Total Accidents and Injury and Fatal Crashes Only)  

 
For the injuries and fatal crashes SPF the accident rate increases from 0.23 Acc/MVMT 
to 0.37 Acc/MVMT (65%) as AADT increases from 60,000 to 150,000.  The sigmoid 
functional shape of the SPF has 2 critical points where rate of change in the gradient of 
the function is significantly altered.  These points were located using a sliding interval 
analysis in the framework of the numerical differentiation technique described by Rao 
(13). Figure 8 provides a generalized diagram of the process.     
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Figure 8 Numerical Differentiation / Sliding Interval Diagram 
 

A scanning interval of 2 ∆x is incrementally moved forward along the function.  In each 
position of the interval a numerical derivative is computed on both sides of the sliding 
point. The ratio R of estimated derivatives on both sides of the sliding point in the middle 
of an interval is calculated at every position of the scanning interval until it reaches a 
predetermined critical value of Rc . For most SPFs  Rc ≥  1.5.  Selection of a scanning 
interval ∆x is data driven and was found to be effective at 20,000 AADT for multilane 
urban freeways. 
 
When a transition is made from a milder into a steeper reach of the Safety Performance 
Function the ratio R was computed as follows: 
 

2121 ,& Δ=Δ∈ Fff =∆x 

 

cRR
df

df
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When a transition is made from a steeper to milder reach of the Safety Performance 
Function the ratio R was computed as follows: 
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Using sliding interval and numerical differentiation technique, critical points were 
identified at AADT of 90,000 and 150,000 for SPF (Total) and 90,000 and 140,000 for 
SPF (Inj.+Fatal).   
 
Relating Changes in Freeway Flow Parameters with Changes in Accident Rates 
Reflected by the Shape of the SPF 
 
In an effort to relate freeway flow parameters such as speed (v) and density (d) during 
peak period associated with the changes in the shape of the SPF, HCM 2000 (12) 
methodology was used.  The following assumptions typical of the urban freeway 
environment were used: 
 
DHV (Design Hourly Volume) =10 % of AADT for AADT <130,000 
DHV(Design Hourly Volume)=8% of AADT for AADT>130,000 
PHF (Peak  Hour Factor) = 0.9 
%Truck during peak period = 2% 
Terrain – Level 
Lane Width = 12 ft 
Shoulder Width > 6 ft. 
Interchange spacing =1 interchange / mile  
 
The results of the HCM analysis were superimposed onto SPF and are presented in 
Figure 9.  Traffic density at 90,000 AADT identified previously as a critical point on the 
SPF can be viewed as a Critical Density, beyond which accidents increase at a faster 
rate.  A portion of the SPF to the left of Critical Density can be viewed as a Sub-Critical 
Zone where accidents increase gradually with AADT.  Traffic density at 150,000 AADT 
can be viewed as a Super-Critical Density beyond which accidents increase very 
gradually with AADT and accident rates level off or even decline.  A portion of SPF to 
the right of Super-Critical Density can be viewed as a Super-Critical Zone.  A portion of 
the SPF between Critical and Super-Critical Densities can be termed Transitional Zone. 
 
It is of interest to note that as AADT increases from 60,000 to 90,000, traffic density 
increases by 50% (from 16 pc/mi/ln to 24 pc/mi/ln.), while operating speeds remain 
almost the same (70 and 69 mph).  It is not unreasonable to assume that if operating 
speeds remain high and traffic density is increased by 50%, accident probability is also 
increased.  The freeway environment becomes much less forgiving of driving errors and 
road rage-like behavior with increase in density of traffic at freeway speeds. The SPF 
reflects that past the AADT of 90,000 the number of crashes increases at a much faster 
rate with increase of AADT. 
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Figure 9 6-Lane Freeway SPF – Changes in Traffic Speed on Density 
 
A possible explanation is that traffic has reached some Critical Density beyond which 
notably higher accident rates are observed.   This increase in the rates is manifested by 
the steeper gradient of the SPF.   
 
Examination of the SPF in concert with traffic operations parameters suggests that 
when freeways are not congested and traffic density is low the number of crashes 
increases only moderately with increase in traffic.  That is why initially the slope of the 
SPF is relatively flat; however, once Critical Density is reached, the number of crashes 
begins to increase at a much faster rate with increase in traffic.  Attainment of the 
Critical Density can be viewed as a critical mass-like phenomenon in physics.  Mix of 
density and speed of traffic is such that probability of a crash is substantially increased, 
thus a steep reach of the SPF. 
 
Further examination of SPF suggests that that past the point of Super-Critical Density 
(AADT of 150,000) the function begins to level off, reflecting only moderate increase in 
accidents and decrease in accident rates related to high degree of congestion and 
significant reduction in the operating speeds.  Density exceeds 45 vehicles per mile per 
lane and speeds are below 52 mph which corresponds to a LOS-F. 
 
Figures 10 and 11 show the boundaries of the Levels of Service (LOS) during the peak 
period superimposed onto the SPFs for the total and injury and fatal crashes.  The LOS 
boundaries during peak periods were estimated using HCM under the same default 
assumptions as earlier.  Average accident rates for the total and injury and fatal crashes 
were computed for each Level of Service (LOS) and are also provided in Figures 10 
and 11. 
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Figure 10 SPF 6-Lane Total – Changes in Accident Rates with Level of Service  
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Figure 11 SPF 6-Lane Injuries and Fatal 

Changes in Accident Rates with Level of Service   
 
Integrating LOS and accident rates in the SPF framework allows us to quantitatively 
relate safety to the degree of congestion.  The data shows that total as well as injury 
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and fatal crash rates increase with AADT and that it is significantly safer to travel on 
urban freeways that operate at the LOS-C or better during the peak period than on more 
congested facilities.   This knowledge has important implications on the philosophy and 
policy of transportation planning and highway design criteria. 
  
Summary  
 
Use of the Neural Networks lends itself well to studying the systemic component of the 
relationship between safety and traffic exposure on multilane urban freeways. The 
functional shape of the Safety Performance Function is well described by a sigmoid 
curve reflecting a dose-response like relationship found in medicine and pharmacology, 
as well as other sciences.  In all cases, accident data for urban freeways exhibited 
extra-variation or over-dispersion relative to the Poisson model. 
     
We observed that on un-congested segments the number of crashes increases only 
moderately with increase in traffic; however, once some critical traffic density is 
reached, the number of crashes begins to increase at a much faster rate with increase 
in traffic. This phenomenon is reflected by a steeper gradient of the SPF.  High density 
of traffic in the high range of AADT is associated with approaching Super-Critical 
Density and leveling off of the SPF, reflecting a high degree of congestion and reduction 
in operating speeds. 
 
Relating different Levels of Service (LOS) during peak periods with accident rates within 
SPF shows that total as well as injury and fatal crash rates increase with congestion. 
This observation suggests that peak spreading and congestion pricing have potential for 
safety improvement in addition to more obvious mobility benefits. Understanding of the 
relationship between the LOS and accident rate can be used to inform public policy, 
transportation planning process as well as highway design criteria.  It offers an 
important insight into the relationship between safety and mobility that will improve 
quality of decisions made by the practicing engineers, planners and elected officials. 
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