
Safety performance functions reflect the complex relationship between
exposure, usually measured in annual average daily traffic, and accident
count for a unit of road section over a unit of time. One of the main uses
of the safety performance functions is to identify locations that experience
more accidents than expected, thus exhibiting a potential for accident
reduction. Overrepresentation in the number of accidents above the
expected or normal threshold predicted by the safety performance func-
tion is only one of many indicators of a potential for accident reduction.
Accident type, severity, road condition, spatial distribution of accidents,
and lighting conditions are only a few of the many important symptoms
of the accident problem. Two methodologies are introduced for identifi-
cation of locations with potential for accident reduction: direct diagnos-
tics and continuous pattern recognition analysis. Use of these methodolo-
gies revealed that existence of accident patterns susceptible to correction
may or may not be accompanied by the overrepresentation in accident
frequency detected by the safety performance functions.

In his work Physics and Philosophy (1), Heisenberg observed: “Since
the measuring device has been constructed by the observer . . . we
have to remember that what we observe is not nature in itself but
nature exposed to our method of questioning.” In the study of road
safety our best measuring device, at present, is a safety performance
function (SPF) described by Hauer (2). SPFs reflect the complex
relationship between exposure usually measured in annual average
daily traffic (ADT) and accident count for a unit of road section over
a unit of time. Use of SPFs calibrated for various facilities allows us
to detect high hazard locations or “sites with promise” (3). Com-
parison of the accident history of a particular class of roads with
some upper control limit predicted by the SPF allows us to detect such
locations. If observed accident frequency on a segment of road is
found to be consistently higher than upper control frequency predicted
by the SPF, then this segment is classified as a high hazard location or
as having a potential for accident reduction. This paper explores
whether the SPF is the best measuring device for the identification of
locations with potential for accident reduction.

DIRECT DIAGNOSTICS

Consider a hypothetical roadway segment, which is 1 mi long with
the following accident history over a 3-year period: 10 accidents
total, including 7 overturning, 2 rear-end, and 1 fixed object. Assume

that overturning accidents on the average represent 22% of the total
for this functional class. Considering that each accident can be
viewed as an independent Bernoulli trial with 22% probability of
overturning, the probability of observing 7 or more overturning
accidents out of 10 can be computed as follows:

As can be seen from the preceding calculations, the probability that
7 accidents or more out of 10 will result in overturning as part of a
normal statistical process is extremely low (.0016). Such low proba-
bility suggests that something in the roadway environment triggers
overturning accidents. This element needs to be identified and cor-
rected. In this hypothetical case history, an overturning accident
problem has been identified by using direct diagnostics methodology.

CONTINUOUS PATTERN 
RECOGNITION ANALYSIS

Now consider a different situation in which that same segment is
located within project limits of a 5-mi-long roadway improvement
project. Figure 1 illustrates accident history within project limits
segmented by 1-mi sections. As can be seen from this diagram, the
accident history within project limits is as follows: total number of
accidents = 50, overturning accidents = 15, and other accidents = 35.
The probability of 15 or more overturning accidents out of 50 total
using direct diagnostics can be computed as described in the previous
example:

If only the direct diagnostics method is used to examine a 5-mi road
improvement project for overturning frequency, it would be con-
cluded that no overturning problem is present within project limits.
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However, it is known that at least 1 mi out of 5 has a serious over-
turning problem. The question then becomes how can a “hidden”
safety problem be identified within project limits? In other words,
how can one systematically recognize a pattern of accidents within a
roadway segment?

The problem involves detection of deviation outside the bound-
aries of the random Bernoulli process in the direction of reduced
safety. This deviation is frequently confined to a very limited area
and needs to be recognized (ferreted out) or classified as such
through some form of propagation of continuous statistical testing.
In order to make appropriate classification decisions, some amount
of a priori knowledge is required about the expected system perfor-
mance. This knowledge was compiled in an extensive data set
describing various characteristics of accident distribution profiles
endemic to specific classes of roads in Colorado. This data set was
compiled for six classes of roads over a period of 8 years and con-
tains 84 different parameters related to accident occurrence, such as
accident type, severity, and roadway conditions. It represents a
source of a priori knowledge base required for computing of a
posteriori probabilities. One of the data sets representing two-lane,
rural, mountainous roads is presented in Table 1.

In order to illustrate further the need for pattern recognition analy-
sis, a case history can be examined involving a two-lane road in the
mountainous area. Over 5 years of accident history, 142 accidents
were recorded for the 7-mi road segment. SPF analysis reveals that
accident frequency is well within the expected range for this type of
facility. An SPF graph reflecting 6 years of accident history (aver-
aged over 3-year periods) for the roadway segments (2 miles or
longer) in the study is presented in Figure 2. Although accident fre-
quency is well within the expected range, examination of the acci-
dent listing revealed unusual concentrations of nighttime accidents.
Figure 3 shows the cumulative graph of nighttime accidents within
study limits. One can test whether or not the overall number of night-
time accidents is overrepresented using a direct diagnostic approach,
considering that 45 out of 142 accidents occurred under dark,
unlighted conditions and that the Bernoulli probability of nighttime
accidents on the two-lane unlighted rural road in the mountains is
.3421 (Table 1).

Although a direct diagnostics test convincingly showed that over-
all nighttime accidents under dark, unlighted conditions are not
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overrepresented within project limits, one may still experience lo-
calized safety problems related to nighttime visibility. The cumula-
tive graph of accidents when dark presented in Figure 3 reveals a
sizable concentration of accidents between mileposts 8.5 and 9.2,
where 15 out of 17 accidents occurred during unlighted conditions.
One can test for the presence of a nighttime accident pattern between
these mileposts using direct diagnostics:

Such low cumulative probability of observing 15 or more acci-
dents under dark, unlighted conditions strongly suggests that there
is something in the roadway environment between mileposts 8.5 and
9.2 that triggers nighttime accidents. A nighttime field visit revealed
that curve signing on numerous curves between mileposts 8.5 and
9.2 had no nighttime retroreflectivity and no curve delineation was
installed. Such a problem is generally susceptible to correction
through installation of new curve signing with high-grade retroreflec-
tive sheeting in combination with installation of chevrons and delin-
eators. If these countermeasures do not prove effective, installation of
permanent lighting may be considered.

The findings involving safety of this two-lane mountainous road
segment can be summarized as follows:

1. Analysis using SPFs shows that accident frequency is well
within the expected range.

2. Direct diagnostics analysis of nighttime collisions shows no
abnormalities.

3. There is, however, a significant nighttime safety problem
between mileposts 8.5 and 9.2 related to the lack of retroreflectivity
of curve signing and inadequate delineation.

What does it all mean? It means that there is a significant yet cor-
rectable safety problem, which is not detectable either through SPF
analysis or the direct diagnostics method, which makes a compelling
case for the pattern recognition analysis.

ANALYTICAL FRAMEWORK FOR CONTINUOUS
PATTERN RECOGNITION

Two previous examples demonstrated that SPF and direct diagnos-
tics analysis alone are not sufficient in detecting safety problems
hidden within roadway segments. In order to recognize a “hidden”
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TABLE 1 Normative Values of Various Accident Characteristics

Description Accidents Percent
Property Damage Only 6,143 58.32%
Injury 4,186 39.74%
Fatality 204 1.94% 100.00%
Persons Injured 6,345 N/A
Persons Killed 232 N/A
Single Vehicle Accidents 8,009 76.04%
Two Vehicle Accidents 2,235 21.22%
Three or more Vehicle Accident 284 2.70%
Unknown Number of Vehicles 5 0.05% 100.00%
On Road 4,086 38.79%
Off Road Left 2,572 24.42%
Off Road Right 3,858 36.63%
Off Road at Tee 5 0.05%
Off Road in Median 1 0.01%
Unknown Road Location 11 0.10% 100.00%
Overturning 2,345 22.26%
Other Non Collision 225 2.14%
School Age Pedestrians 2 0.02%
All Other Pedestrians 16 0.15%
Broadside 73 0.69%
Head On 473 4.49%
Rear End 754 7.16%
Sideswipe (Same Direction) 146 1.39%
Sideswipe (Opposite Direction) 488 4.63%
Approach Turn 97 0.92%
Overtaking Turn 149 1.41%
Parked Motor Vehicle 113 1.07%
Railway Vehicle 1 0.01%
Bicycle 24 0.23%
Motorized Bicycle 1 0.01%
Domestic Animal 118 1.12%
Wild Animal 1,015 9.64%
Unknown Accident Type 6 0.06% 100.00%
Total Fixed Objects 4,124 39.15%
Total Other Objects 363 3.45%
Daylight 6,071 57.64%
Dawn or Dusk 556 5.28%
Dark - Lighted 147 1.40%
Dark - Unlighted 3,603 34.21%
Unknown Lighting 156 1.48% 100.00%
No Adverse Weather 7,816 74.20%
Rain 414 3.93%
Snow or Sleet or Hail 2,015 19.13%
Fog 28 0.27%
Dust 1 0.01%
Wind 101 0.96%
Unknown Weather 158 1.50% 100.00%
Dry Road 6,221 59.06%
Wet Road 724 6.87%
Muddy Road 10 0.09%
Snowy Road 735 6.98%
Icy Road 1,942 18.44%
Slushy Road 382 3.63%
Foreign Material Road 29 0.28%
With Road Treatment 78 0.74%
Dry with Icy Road Treatment 8 0.08%
Wet with Icy Road Treatment 1 0.01%
Snowy with Icy Road Treatment 3 0.03%
Icy with Icy Road Treatment 13 0.12%
Slushy with Icy Road Treatment 5 0.05%
Unknown Road Condition 382 3.63% 100.00%

Total Accidents: 10,533
Total Number of Locations: 2,463

Rural Mountainous 2-Lane Undivided Highway
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pattern in random accident occurrence, one needs to devise some
form of continuous statistical testing for use along the length of road-
way segments. This continuous testing is expected to delineate the
boundaries of “abnormal” accident occurrence within project limits.
In other words, it is expected to reveal locations with potential for
accident reduction. To achieve this goal, the following procedure can
be implemented.

Select a scanning interval ∆s of fixed length containing a feature
vector Xi , consisting of nt total accidents, ni of which are of the type i.
The scanning interval, in its first position, is tested for the presence
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of accident pattern i using a direct diagnostics method, then the
scanning interval is moved a fixed distance δi, known as a scanning
increment. After sliding the scanning interval a distance of one scan-
ning increment, a new feature vector Xi + 1 is obtained and tested
again for the presence of pattern i. Continuous sliding and testing of
the scanning interval will reveal the limits of the accident patterns
if they are present. Figure 4 depicts the reference framework for
continuous testing for the presence of accident patterns by moving
a scanning interval within study limits. A pattern recognition algorithm
can be described as follows:
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• Select scanning interval ∆i = ∆1 = ∆2 = . . . ∆n. Scanning inter-
val is generally 1 mi for the analysis of roadway segments in rural
areas. Selection of the scanning interval is data driven and can be
extended beyond 1 mi in areas with low ADT and reduced in the
areas of high ADT.

• Select a scanning increment δi = δ1 = δ2 = . . . δn. The scanning
increment is also data driven and is generally in the range between
0.01 mi and 0.1 mi. A scanning increment of 0.10 mi was found
adequate for most roadway environments.

• Obtain feature vector Xi1{x . . . xn} reflecting accident history
within segment ∆1.

• Identify the number of total accidents nt1 and the number of
accidents of a specific type ni1 contained within feature vector
Xi1{x . . . xn}.

• Select appropriate pi reflecting the Bernoulli probability of suc-
cess for each trial related to pattern i. In this context SPFi represents
Safety Performance Function i.

• Select critical value P� for making classification decision, P� =
.01 for most cases; when identifying patterns in the areas with low
ADT, P� = .05 can be used.

Compute

If P (SPFi / ni) ≤ P�, then the classification decision is made that

If P (SPFi / ni1) ≤ P�, then the classification decision is made that

• Following the completion of the first pattern recognition cycle,
the scanning interval ∆ is shifted an incremental distance δ. At the
second position of ∆, a feature vector Xi2{x . . . xn} reflecting acci-
dent history of the roadway segment delineated by ∆2 is obtained
and P(SPFi / ni2) is computed, at which point a second classification
decision is made.
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In this incremental fashion the entire distance S representing proj-
ect limits is tested for the presence of accident pattern i. If no indica-
tion of pattern development is observed at the ends of the study area,
the number of direct diagnostics tests can be computed as follows:

If some evidence of pattern development is observed at either
end of the study, the author recommends extending pattern recog-
nition analysis a distance of one ∆ outside the project limits. It will
ensure detection of accident patterns that are partially observed
within project limits and are extending outside of the study area.

In order to quantify the strength of the pattern, the concept of
pattern intensity index (PI) is introduced.

Pattern intensity monotonically increases as conditional proba-
bility of observing n accidents of type i monotonically decreases. PI
is only computed for the conditions when

Assigning the PI a value of 0 when P(SPFi / ni) > Pα allows for
easy delineation of the accident pattern boundaries on the PI graph.
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Table 2 shows a tabulation of PI along a segment of road discussed
in the previous example and Figure 5 contains a graph reflecting a
pattern of nighttime accidents. It is important to note that performing
hundreds of tests such as these carries an inherent statistical danger
of false positives, but it is more than offset by a significant benefit of
identifying hidden accident patterns susceptible to correction.

SUMMARY

Detection of an accident pattern suggests a presence of an element
or elements in the roadway environment, which triggered a devia-
tion from a random statistical process in the direction of reduced

158 Paper No. 02-2160 Transportation Research Record 1784

safety. Identification of such an element through engineering inves-
tigation, which typically includes a site visit and plans review,
always provides a critical clue to accident causality. Development
of the diagnostic knowledge base and a pattern recognition algo-
rithm led to the following finding: Existence of accident patterns
susceptible to correction may or may not be a accompanied by the
overrepresentation in accident frequency reflected by the safety per-
formance functions or high accident rates. In fact it can be said that
detection of accident patterns provides a more direct link to the
development of the countermeasure strategy than a mere increase in
accident frequency. Furthermore, most of the frequency clusters are
merely reflections of specific patterns. In many cases, the expected
or normal proportion of accidents is counterintuitive, which further
emphasizes the need for the creation of a framework of diagnostic
norms for various types of roadways. These diagnostic norms should
be calibrated locally for various road classes in various environ-
ments. Accident type, severity, road condition, spatial distribution
of accidents, and lighting conditions are only a few of the many
important symptoms of the accident problem, which can be detected
using pattern recognition methodology.
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TABLE 2 Pattern Intensity Index Along Study Segment

Loc. MP Mid-point 
Acc. Dark- 
Unlighted 

Total Number 
of Accs. 

Chance of Dark- 
Unlighted Acc. P(X>Ni,Nt,p) Score 

Modif. 
Score (PI) 

8.09-9.09 8.59 14 27 0.3421 0.0446 0.22 0.00 
8.19-9.19 8.69 13 17 0.3421 0.0005 21.90 21.90 
8.29-9.29 8.79 14 17 0.3421 0.0001 154.59 154.59 
8.39-9.39 8.89 14 17 0.3421 0.0001 154.59 154.59 
8.49-9.49 8.99 13 17 0.3421 0.0005 21.90 21.90 
8.59-9.59 9.09 14 20 0.3421 0.0012 8.49 8.49 
8.69-9.69 9.19 13 23 0.3421 0.0233 0.43 0.00 
8.79-9.79 9.29 12 24 0.3421 0.0809 0.12 0.00 
8.89-9.89 9.39 11 30 0.3421 0.4557 0.02 0.00 
8.99-9.99 9.49 9 23 0.3421 0.3827 0.03 0.00 

9.09-10.09 9.59 7 34 0.3421 0.9727 0.01 0.00 
9.19-10.19 9.69 6 33 0.3421 0.9871 0.01 0.00 
9.29-10.29 9.79 5 37 0.3421 0.9989 0.01 0.00 
9.39-10.39 9.89 5 37 0.3421 0.9989 0.01 0.00 

NOTE: Acc(s). = accident(s).
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